
NASA Contractor Report 4326

An Enhanced Integrated

Aerodynamic Load/Dynamic

Optimization Procedure

for Helicopter Rotor Blades

Aditi Chattopadhyay and Y. Danny Chiu

CONTRACTS NASI-18599 and NAS1-19000

OCTOBER 1990





NASA Contractor Report 4326

An Enhanced Integrated

Aerodynamic Load/Dynamic

Optimization Procedure

for Helicopter Rotor Blades

Aditi Chattopadhyay

Analytical Services & Materials, Inc.

Hampton, Virginia

Y. Danny Chiu

Lockheed Engineering & Sciences Company

Hampton, Virginia

Prepared for

Langley Research Center
under Contracts NAS1-18599 and NASI-19000

National Aeronautics and
Space Administration

Office of Management
Scientific and Technical
Information Division

1891)





AN ENHANCED INTEGRATED AERODYNAMIC LOAD/DYNAMIC

OPTIMIZATION PROCEDURE FOR HELICOPTER ROTOR BLADES

Aditi Chattopadhyay 1
Research Scientist

Analytical Services & Materials, Inc.
Hampton, Virginia

Y. Danny Chiu 2

Research Engineer
Lockheed Engineering & Sciences Company

Hampton, Virginia

Abstract

An enhanced integrated aerodynamic load/dynamic AI

optimization procedure, developed for minimizing c

vibratory root shear forces and moments of a helicopter Cr
rotor blade is described. The optimization problem is for- ct

mulated with 4/rev vertical and 3/rev inplane shears at the Cp

blade root as objective functions. Constraints are imposed CT

on 3/rev radial shear, 3/rev flapping and torsional mo- CX

ments, 4/rev lagging moment, blade natural frequencies, EI=, Fizz

weight, autorotational inertia, centrifugal stress and rotor EI=,, Elzz,
thrust. The 'Global Criteria Approach' is used for for-

f3,fa,f5.f6
mulating the multi-objective optimization. Design vari-

ables include spanwise distributions of blade bending fr

stiffnesses, torsional stiffness, nonstructuml mass, chord, fx
radius of gyration and blade taper ratio. The program
CAMRAD is coupled with an optimizer, which consists fz

F,F
of the program CONMIN and an approximate analysis. /_
The optimization procedure is applied to an advanced
rotor as a reference design. Optimum blade designs, ob- Fx
tained with and without a constraint on the rotor thrust, Fz

are presented and are compared to the reference blade, gJ
A

Substantial reductions are obtained in the vibratory root g

forces and moments. As a byproduct, improvements are GJ

also found in some performance parameters which were G Jr
not considered during the formulation of the optimization kr

problem. The effect of thrust constraint on the values of (L/D)max
the vibratory forces and moments is demonstrated by me

varying the magnitude of the prescribed thrust. A proper mx

choice of the 'move limit' paremeter, used in the ap- mz
proximate analysis is shown to have significant effect on ML

the optimum results, n

N

Notation

autorotational inertia, lb-ft 2

chord, ft
root chord, ft

tip chord, ft

power coefficient

thrust coefficient

propulsive force coefficient

bending stiffnesses, lb-ft 2
-)

bending stiffnesses at blade root, Ib-ft"

natural frequencies of f'trst four coupled

elastic modes, per rev
3/rev radial shear, lb

3/rev inplane shear, lb

4/rev vertical shear, lb

objective functions

approximate objective function
inplane component of blade airload, lb/ft

normal component of blade airload, lb/ft

fh constraint function

approximate constraint function
torsional stiffness, lb-ft 2

torsional stiffness at blade root, lb-ft 2

principle radius of gyration at blade root, ft

maximum lift to drag ratio of an airfoil

3/rev torsional moment, Ib-ft

3/rev flapping moment, lb-ft

4/rev lagging moment, Ib-ft

move limit

integer, 0 < n < 1
number of blade nodes

1 Member, AIAA, AHS.

2 Member, AHS.



NCON
NDV
NSEG
R
Si

Smax

T

T_f

w)

W

x, y, z
(x

,tl

f_

number of constraints

number of design variables

number of blade segments

blade radius, ft

centrifugal stress in ith segment, lb/ft 2
maximum allowable stress, lb/ft 2

thrust, lb
thrust of reference rotor, lb

nonstructural weight per unit length at fh

node, lb/ft

total blade weight, lb
reference axes

angle of attack, deg
taper ratio
.th

design variable
advance ratio

thrust-weighted solidity

blade azimuth angle, deg

rotor angular velocity, rad/sec

Introduction

Vibration has been a major source of problems in

helicopters and its alleviation plays an important role in
the rotor blade design process. Due to more stringent re-

quirements in the permissible vibration levels and require-
ments for increased reliability, the helicopter industry is

exploring methods to reduce vibration. In the past, con-

ventional design methods mainly used the designer's ex-

perience and trial and error methods. Using these
methods, rotor vibratory responses are reduced through

post design addition of tuning masses, which incorporate

weight penalty. Today with efficient optimization
schemes available and improved helicopter analysis, at-

tempts are being made to apply optimization techniques,
at early stages of design, to the vibration problem.

Due to the importance of the problem, there has been
a considerable amount of research aimed at reducing

vibration using optimization, primarily at the blade level,
as shown in Refs. 1- 11. In most of this work, the vibra-

tion is controlled by reducing the oscillatory hub shears
and moments. In one such effort, the mode shape is

changed to make it orthogonal to the aerodynamic forcing
function and thereby reduce vibration I. An early attempt

at optimum blade design for reduced vibration is due to
Peters et al. 2 where the objective was to place the natural

frequencies away from the critical frequencies and there-

by lower the hub shear. Refs. 3 and 4 present more
recent developments in optimum blade designs for mini-

mum weight with constraints on multiple natural frequen-
cies, blade stress and autorotational inertia for articulated

rotor blades with both rectangular and tapered planforms.

However, the blade was assumed to be in vacuum and

therefore the optimization was performed without air-

loads. The results of the above research indicate that by

appropriately selecting the blade inertial, structural and

sometimes aerodynamic characteristics, it is possible to
minimize blade vibration.

In most of the previous work dealing with optimum

blade designs for reduced vibration, the aerodynamic
loads on the blade were prescribed and the effects of the

design changes, during optimization, on the blade airloads
were not included. In Ref. 10, for the f'trst time, the in-

tegration of aerodynamic loads and dynamics was ad-
dressed by coupling a comprehensive helicopter analysis
code, CAMRAD 1l, the nonlinear optimization algorithm,

CONMIN t2, and an approximate analysis technique. A

combination of the blade root 4/rev vertical shear and the

blade weight was minimized with constraints on coupled

elastic flap/lag natural frequencies, blade autorotational

inertia and centrifugal stress. The use of the program

CAMRAD permitted the design of the blade with calcu-

lated airloads and its presence in the closed-loop op-

timization procedure allowed the inclusion of the effects
due to changes in these airloads with changes in design

variables. The paper demonstrated significant reductions

in the 4/rev vertical shear and blade weight, which were

objective functions. As a byproduct, it was shown that

optimization also reduced the total power loading re-

quired.

The research reported in Ref. 15 extends the work of

Ref. l0 by including other sources of blade vibration that
are transmitted to the hub. The purpose of this paper is to
include details which were not included in Ref. 15 due to

page limitations. In Ref. 15 a more comprehensive for-

mulation was presented by including the 3/rev inplane
and radial shears, the 3/rev flapping and torsional mo-

ments and the 4/rev lagging moment in the optimization

formulation in the form of objective functions and/or con-

stmints. In Ref. 10, the optimum rotor was required to
maintain the same CT/cr and Cx/ct as the reference rotor

through a trim procedure, CT being the rotor thrust coeffi-
cient, Cx the propulsive force coefficient and cr the thrust

weighted solidity of the blade. This allowed the thrust of

the optimum rotor to be lower than that of the reference

rotor due to the smaller solidity of the optimum blade.
To avoid this loss in the rotor thrust, in Ref. 15, an addi-

tional constraint is imposed on the total thrust.

Problem Description

Optimization techniques are applied to minimize the
vibratory blade loads of a four-bladed helicopter in for-

ward flight. This is done by including the major sources

of vibration (forces and moments) in the rotating frame

that are transmitted to the nonrotating system as 4/rev

harmonics of the longitudinal, lateral and vertical forces



andthepitch,roll andyawmoments.Forinstance,ina
four-bladedrotor,the4/revverticalshearatthebladeroot
istransmittedasa4/revverticalforceatrotorhubandthe
3 andthe5/revcomponentsof theinplaneandtheradial
shearsaretransmittedas4/revforcesinbothlateraland
longitudinaldirectionsat thehub. Similarly,the3 and
the5/revcomponentsof theflappingandthetorsional
momentsatthebladerootaffecttherotorhubin theform
of oscillatory4/revpitchandroll moments.Finallythe
4/revlaggingmomentattherootcausesoscillatory4/rev
yawingmomentat thehub.Therefore,in thisstudy,all
of the3 andthe4/revcomponentsof thesecriticalshear
forcesandmomentsareincludedin theoptimizationfor-
mulationin theobjectivefunctionsand/orconstraints.
Althoughthe5/revcomponentsof theinplaneshear,the
flappingandthetorsionalmomentsareimportant,their
valuesaremuchsmallerandthereforearenotincluded.
Theexcessiveadditionof weight,associatedwithmost
vibrationreductionprocesses,isavoidedbyincorporating
anupperlimitconstraintonthebladeweight.

Optimization Formulation

The objective functions are the 4/rev vertical shear,

fz, and the 3/rev inplane shear, fx, at the blade root. The

following constraints are imposed: 1) upper and lower

bounds on first four elastic coupled blade natural frequen-
cies, f3, f4, f5 and f6,2) lower bound on blade autorota-

tional inertia, AI, 3) upper bound on total blade weight,

W, 4) upper bound on centrifugal stress on each blade

segment, si, i = 1,2 .... NSEG (NSEG is the number of

blade segments), 5) upper bound on 3/rev radial shear, fr,
6) upper bound on 3/rev flapping moment, rex, 7) upper

bound on 3/rev torsional moment, mc, 8) upper bound on

4/rev lagging moment, mz, 9) lower bound on total thrust,

T and side constraints on design variables to avoid im-
practical solutions. The bounds are selected from a

baseline design which will hereafter be called the

'reference' blade. It is required that the optimum blade
maintains a certain level of the reference blade thrust.

This leads to a lower bound constraint on the total thrust,

T, which is expressed as

T>__nTre[ (o<n._< 1) (1)

where Tref is the reference blade thrust. A method called
the 'Global Criteria approach '13 is used to formulate the

multiple objective optimization problem. Using this

method, the optimum solution is obtained by minimizing

a 'global criterion' def'med by the sum of the squares of
the relative deviations of the individual objective func-

tions from their respective individual optimum values.

The optimization problem reduces to minimizing the

global objective function, F (q_), where

, (q_)-f_ (q_b]2
+

] := -:=M)]"" j

subject to the complete set of constraints

(2)

gj ((p) < 0 j = 1,2 ..... NCON

and the side constraints. The design variable vector q)I "

is obtained by minimizing the single objective function

fz 0P) subject to the set of constraints g (q0) and the design

variable vector g_2* is obtained by minimizing fx ((P) sub-

ject to the same set of constraints. In the present case,
due to the nonlinear nature of the above function the ob-

jective function in Eqn. 2 is modified as follows :

F(_)=,/-:-(_) (3)

The design variables are the blade stiffnesses at the root,
El=,, El=,, GJr, the taper ratio, _., the root chord, Cr, the

radius of gyration at the blade root, kr and the nonstruc-

tural weights wj, j= 1,2 ..... N, where N is the total number
of blade nodes.

Blade Model

In this section the modeling assumptions that are used

to relate the design variables to the blade structural

properties like weight, autorotational inertia and
centrifugal stress are described. A linear taper is assumed

along the blade planform, as shown in Fig. 1 (to reduce

the number of design variables) and the blade taper ratio

is expressed as follows :

_.= C__r (,_)
ct

where Cr is the root chord and ct is the tip chord. It is

assumed that the blade stiffnesses arise solely from the

blade structural component and the contribution of the

nonstructural masses, the skin and honeycomb are as-

sumed to be negligible. The following radial distribu-
tions are used for the stiffnesses:

EIxx(y)=Elxx"I_R(c('Y)-I) +LCr 1; (5)

where R is the blade radius and c(y) is the chord distribu-

tion. For a linear taper

crrZ:c(.y)_ _ (6)c(y)= LRL c" 1

3



SimilardistributionsareusedforElzzandGJ. Thelink
betweentheintermediatedesignvariablesandtheblade
crosssectionalpropertieslikearea,weight,autorotational
inertiaandcentrifugalstressaredescribedin detailin
Ref.10.

Analysis

The programCAMRADis usedfor bothblade
dynamicandaerodynamicanalyses.TheprogramCON-
MIN,alongwithanapproximateanalysistechnique,is
usedforoptimization.

Dynamic Analysis
In CAMRAD the blade response is computed using

rotating, free-vibration modes, equivalent to a Galerkin

analysis. Ten bending modes, out of which seven are

flapping (one rigid and six elastic) and three are lead-lag

(one rigid and two elastic) and one rigid body torsion
mode, are calculated. Blade resonances up to eight per
revolution are included and therefore eight harmonics of
the rotor revolution are retained in the air loads calcula-

tion. The blade loads are generated using the isolated
rotor model of CAMRAD.

Aerodynamic Analysis
CAMRAD is also used to predict the aerodynamic

loading on the blade. Some assumptions made, while

running the code, include: uniform inflow, yawed flow on
the rotor, unsteady aerodynamics model and no dynamic

stall. A trim analysis is performed inside CAMRAD at

each step of design optimization. Since the reference
blade is a wind tunnel blade model, one of the wind tun-

nel options was selected for trimming the blade. The
blade was trimmed to maintain the same C'r/cr, Cx/cr and

flapping angles as the reference blade using the collective
and the cyclic (lateral and longitudinal) pitch and the

shaft angle.

Optimization Implementation
The basic algorithm used is the method of Feasible

Directions as implemented in the optimization program

CONMIN. Since the optimization process requires many

evaluations of the objective function and constraints

before an optimum design is obtained, the process can be

very expensive if full analyses are made for each function
evaluation. The objective function and constraints are

therefore approximated by linear Taylor series expansions

based on the design variable values from CONMIN and

the sensitivity information from the full analysis. Since

the objective function and the constraints are all

linearized, the optimization problem essentially reduces to

a sequential linear programming (SLP) procedure.

Specifically, if the objective function F, the constraint g,

and their respective derivatives are calculated for the

design variable q_ using an exact analysis, their values

for an increment in the design variable A q_k are as fol-

lows:

NOV (7)

k=l

and
NDV

k = 1 ACpk

(8)

where the quantities denoted (^) represent approximate

values and NDV denotes the number of design variables.

The assumption of linearity is valid over small increments

in the design variable values and does not introduce large
errors. A 'move limit' (ML), defined as the maximum

fractional change of each design variable value, has been

imposed as upper and lower bounds on each design vari-

able qh:. In this paper, equal values are used for both

upper and lower bounds.

Test Problem

The reference blade chosen for this work is a

modification of a wind tunnel model of an advanced ar-

ticulated rotor blade of the Growth Utility Rotor 14. The
modifications were made to the model to make it more

suitable for optimization studies. For example, a single

airfoil is used throughout the blade span instead of the
three different airfoils present in the advanced blade.

Also, a rectangular planform is assumed for the reference

blade rather than the tapered. The reference blade has a

radius, R = 4.685 ft, rotational speed, _ = 639.5 rad/sec,

flap hinge offset value (normalized with respect to the

radius) of 0.0534 and maximum linear twist of -16

degrees. Further details of the blade model can be found

in Ref. 10. Optimum designs are obtained for a forward
flight case with an advance ratio, p. = 0.3.

Results

In this section, results obtained by using the optimiza-

tion procedure are presented. Optimum designs are ob-

tained in 10-15 cycles. Optimum blade designs are ob-

tained with a thrust constraint of T>_ Trey , i.e., the op-
timized blade must maintain at least the reference blade

thrust (n = 1.0 in Eqn. I). Note that when T -- Tmf, the

solidities of the optimum and the reference blades will be
the same since CT/6 and CX/¢_ are maintained constant

through the trim procedure. Results are also obtained

without the thrust constraint. This represents a case

where the thrust can be reduced if ¢r is reduced, as long
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as the quantities CT/t_ and CxM are maintained constant

(in this case through the trim procedure), i.e., the thrust

and the propulsive force per unit area are held constant

during the optimization. The remaining constraints are
the same for both cases. In addition results are also

presented with varying magnitude of the required thrust,
i.e., for different values of n in Eqn. 1. For ease of refer-

ence, the following notation will be used

Case 1: optimum design with thrust constraint,

T> Tref

Case 2: optimum design without thnlst constraint.

Clearly Case i is of much more practical interest. How-
ever, Case 2 is included because it brings out some inter-

esting phenomenological effects which illustrate impor-
tant aspects of aerodynamic/dynamic interaction in

rotorcraf. These integrated aspects are important to

predict and understand in future efforts in integrated
rotorcraft analysis and optimization.

Optimization Results
Table 1 presents a summary of the reference and the

optimum designs in terms of the objec;ive functions and

constraints. By definition, a constraint is active when its
value reaches one of the prescribed bounds after op-
timization. From Table 1, f6 (lst elastic lead-lag) is an

active constraint in Case 1. The 3/rev mx and mc (flap-

ping and torsional moments, respectively) and the thrust
constraint are also active in Case 1. The remaining con-

straints stay within or below the prescribed limits. There

is a significant reduction (11.7 percent) in blade weight,
from that of the reference blade, in Case 2. Fig. 2 shows

that the centrifugal stresses in each segment remain below

the prescribed upper bound, Smax, and Iess than reference
blade stresses for both Cases ! and 2.

Table 2 presents a summary of the reference and the

optimized blade design variables (except for the nonstruc-
tural masses which are presented in Fig. 3). For Case 1

all of these design variables except kr remain unchanged,
from the reference to the optimum. The optimum blade

therefore remains rectangular in planform. Considerable

changes, however, occur in Case 2. The increases in El=,

and Elzz, from the reference blade values, in Case 2, are

caused by the fact that theoptimum blade is tapered, with
k = 1.24, whereas the reference blade has a rectangular

planform. Therefore, to account for the loss of stiffnesses
towards the blade tip and to satisfy the frequency con-
straints, the stiffness values must increase at the root. It

is interesting to note from Table 2 that the value of the

design variable GJr remains unchanged after optimization

although the 3/rev torsional moment is constrained. This
is because only a rigid body torsion mode is included in

the analysis. In Case 2 there is a significant reduction in
the blade root chord (37.8 percent) resulting in a reduced

blade solidity (46.7 percent) from the reference blade

value; the optimum blade in Case 2 with a smaller

solidity permits less thrust to achieve the same CT/_ goal

(Table 1).
The nonstructural weight distributions of the refer-

ence and the optimized blades are presented in Fig. 3.
Reductions are shown in these weights, from reference to

optimum, primarily over the blade inboard region. The
weights increase towards the blade tip due to the autorota-
tional inertia constraint. The inboard reductions of these

weights are less in Case 1 than in Case 2. Table 2 and

Fig. 4 present a comparison of the amplitudes of the 4/rev
vertical and the 3/rev inplane shears, which are the objec-
tive functions. The 4/rev vertical hub shear is reduced by

10.9 percent and the 3/rev inplane shear is reduced by 4.1

percent, from the reference blade values, in Case 1. The
reductions are naturally larger in Case 2, 89.8 percent and

55 percent reductions in the vertical and inplane, respec-

tive!y. This is due to the fact that this rotor has much
lower thrust.

It was of interest to investigate how much of the

reduction in the vibratory forces and moments were

caused by reductions in the blade section airloads. There-
fore, the normal and the inplane components of the total

aerodynamic forces on the section, resolved with respect
to the hub plane, and denoted Fz and Fx respectively are

plotted in Figs. 5 - 12. Figure 5 presents the radial dis-
tribution and Figs. 6 - 8 present the azimuthal distribu-
tions of Fz. These figures show that, for Case 2, op-

timization significantly reduces the amplitude of Fz dis-
tribution of the advancing blade along the blade radius

(Fig. 5). The amplitudes of the same distribution around

the azimuth, plotted at three critical radial stations, 25%

radius (y/R = 0.25; Fig. 6), the thrust-weighted equivalent
chord point (y/R = 0.75; Fig. 7) and blade tip (y/R = 0.99;

Fig. 8), for Case 2, are also reduced. No visible changes
are observed in the above distributions for Case 1. The

large reductions in the amplitude of Fz distribution in
Case 2 can be attributed to the lower thrust carried by the

blade. Therefore, the larger reduction in the 4/rev vertical

shear in Case 2 is brought about largely by the reduction

in Fz. Fig. 9 presents the radial distribution and Figs. 10

- 12 present the azimuthal distributions of Fx (at the same
three radial locations as in Fz. Only Case 2 shows reduc-

tions in the amplitudes of Fx distributions. The reason is

that, in Case 2, the blade is being trimmed to produce the
same CT/t_ and Cx/t_ as the reference blade and no con-

straint is imposed on the thrust and the propulsive force.

The smaller rotor eventually carries both less thrust and

less propulsive force. Therefore, Fx having a component
of the thrust as well as the propulsive force embedded in

it reduces significantly. This study clearly shows that in



Case 2 the vibratory root shears and moments are reduced

partly by proper blade tuning (through nonstructural

weights) and frequency placements, but largely due to the

reductions in the blade airloads. The mechanism is dif-

ferent in Case 1, where blade aerodynamic consideration

is strongly coupled through the thrust constraint. In this

case, the mean loads remain unchanged, however, the

vibratory forces are reduced mainly through proper fre-

quency placements and blade tuning.

Effect on Thrust Constraint

Since the thrust constraint was found to play an im-

portant role in the optimum blade design, it was of inter-

est to study its role in greater details. This is done by

varying the magnitude of the prescribed thrust (by chang-
ing the value of 'n', Eqn. 4) and comparing the forces and

moments at the blade root. The results of this study are
shown in Figs. 13 and 14. Figure 13 presents the varia-

tions of the root shear forces and Fig. 14 presents the

variations of the root moments with changes in the thrust

constraint. It is interesting to note, from these figures,
that the thrust constraint does not affect the values of the

forces and moments for values of T < 0.54 Tre/. The mag-
nitudes of the shear forces and moments increase with the

increase in the magnitude of the prescribed thrust, as ex-

pected, above that value. For example there is a near-
linear increase in the values of the shear forces as indi-

cated by Fig. 13. It is also of interest to note from Fig.
13 that the 3/rev inplane and radial shears vary almost

identically with n. Figure 14 shows gradual increases in
the values of the 4/rev lagging and the 3/rev torsion mo-

ment above n = 0.54. The increase in the 3/rev flapping
moment value tends to flatten out above n = 0.90. In both

Figs. 13 and 14 the value of n -- 1.0 corresponds to the
100% thrust case (Case 1).

Effect on Rotor Performance

Although rotor performance was not considered while
designing the optimum blades, it was of interest to inves-

tigate the effect of optimization or_ the performance. An
important performance criterion is the total power re-
quired for a given task, which is a measure of economic

efficiency. Therefore, it was of interest to see how it is

affected. Recalling the fact that the optimum rotor in Case

2 is significantly smaller than the reference rotor, in Fig.
15 the power coefficient per unit solidity is compared.

Fig. 15 indicates that the dynamic tuning did not increase

the normalized power in Case 1. In Case 2 the solidity

flexibility reduced the power as the thrust was reduced,

however, the power loading (per unit solidly) was more
efficient for the optimum blade (9.2 percent lower than

the reference blade) as shown in Fig. 15. This is further

demonstrated by plotting the normalized section power
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coefficient (normalized with respect to its value at the tip
of the advancing blade) against Mach number, at some

typical radial locations, in Figs. 16 - 20. These figures

indicate that the general nature of the power distributions
around the blade azimuth are similar for the reference and

the optimum blades of both Cases 1 and 2. For example,

at the thrust-weighted equivalent chord point (Fig. 18) the

power is evenly distributed between the advancing and

the retreating blades whereas towards blade tip (y/R =

0.99; Fig. 20) most of the power is being used by the
advancing blade. However, there is a definite reduction in

the power requirement, from reference to optimum, as in-

dicated by the reduced sizes of the diagrams. The reduc-
tion being more significant in Case 2. The reduction in

the power is further investigated through a study of the
blade angle of attack distributions. Figures 21 - 24 show

the angle of attack plotted against Mach number, at the

same radial locations as the section power coefficient dis-

tribution. The _)max shown in these figures, cor-

responds to the RC - 410 airfoils (Ref. 16) used in the
reference blade. The figures indicate that the distributions

are similar between the reference blade and the optimum
blade in Case 1. However, for Case 2, both figures show

that the advancing blade moves further away whereas the

retreating blade moves closer to the (L/D)max. This indi-

cates that the retreating blade of the optimum rotor is
operating more efficiently than the reference rotor, caused
by a shift and increase in the mean section lift coefficient

on the retreating blade after optimization. This explains
the efficient power loading in the optimum blade for Case

2. A similar phenomenon is reported in Ref. 17.

Effect of Move Limit

It was observed, during the optimization process
using linear Taylor series approximation, that the move

limits (ML) used in the approximate analyses of the ob-

jective functions and the constraints affected the optimum
values to a great extent. Depending upon the value of
ML, several different local minima resulted. One such

occurrence is shown in Fig. 12, where the objective func-

tions with a thrust constraint of T _>0.75 Tref (n = 0.75 in

Eqn. 4) are plotted for different values of ML. The fig-
are shows a large increase in the optimum value of the
4A'ev vertical shear, fz, with a decrease in the value of

ML from 0.1 to 0.02. Similar changes are also in the
optimum value of the 3/rev inplane shear, fx. However, fz

is found to be more sensitive to ML than fx. For ex-

ample, the optimum value of fz reduces by more than 25
percent as the value of ML is increased from 0.02 to 0.1.

The corresponding change is around 8 percent for fx.

This shows that the objective functions used are highly

nonlinear with respect to the design variables with higher

nonlinearity in case of the 4/rev vertical shear. Therefore,



suchnonlinearobjectivefunctionsandconstraintsneeded
tobeexaminedmorecarefullyand_ studywasdoneon
themosteffectiveuseof ML. In general,thereisatrade-
off betweena goodlocalminimumandincreasedcom-
putertime. Forinstance,a smallmovelimitprovidesa
smootherconvergence,but therateof convergenceis
veryslowandoftenthechancesarethatit doesnotcon-
vergetoa goodlocalminimum(e.g.,thefzvalueinFig.
25withML -- 0.02).A largemovelimit givesafaster
rateof convergencewithmorechancesof oscillation(in
caseof anonlinearfunction),oftenrunningintomathe-
maticalsingularity(i. e.,negativeobjectivefunction).It
wasthereforedecidedto useavariablemovelimitproce-
dureinwhichtheoptimizationprocedureisstartedwitha
largeMLandtheprocesscontinueduntiltheapproxima-
tionyieldsnegativeobjectivefuncti_ms.At thispointa
switchis madeto severalsetsof smallervaluesof ML.
TheML valuethatyieldsthebestlocalminimumis
selectedto be the optimumdesign. In the present
analysis,movelimitsin therangeof 0.1- 0.01(10- 1
percent)havebeenused.

ConcludingRemarks

In thispaperanintegratedaerodynamic/dynamicop-
timizationapproachhasbeendescribedforrotorbladesto
obtainreducedvibratoryrootloads.The4/revvertical
shearandthe3/revinplaneshearforcesareminimizedfor
anadvancedarticulatedrotorbladeunderforwardflight
conditions.The'GlobalCriteriaApproach'is usedfor
formulatingthe multi-objectiveoptimizationproblem.
Constraintsareimposedontheremainingvibratoryloads
- the3/revradialshear,the3/revflappingandtorsional
momentsandthe4/revlaggingmoment.Constraintsare
alsoimposedonbladenaturalfrequencies,autorotational
inertia,centrifugalstressandrotorthrust.Theprogram
CAMRADis usedfor the aerodynamicanddynamic
analysisof thebladeandtheprogramCONMIN,along
withanapproximateanalysistechnique,is usedfor the
optimization.Thebladeistrimmedat each step of design

optimization. The optimum designs are compared with a
reference blade. Two optimum design cases were

studied. In Case 1 the thrust of th_ optimum rotor was
constrained to be the same as the reference rotor and in

Case 2 no constraint was imposed on the thrust. The ef-

fect of thrust constraint was studied in detail. Rotor per-

fomance, a criterion, not included while designing the op-
timum blades, was also studied. The effect of move limit

used in the approximate analysis on the optimum solution,

was investigated.

Following are the conclusions that are made from this

study:
1. The Global Criteria Approach is effective in solv-

ing the multiple objective problem The integrated op-

timization scheme is very efficient and results are ob-

tained in 10 - 15 cycles.

2. The procedure yields significant reductions in the

objective functions. The 4/rev vertical shear is reduced

by 10.9 and 89.8 percent and the 3/rev inplane shear is

reduced by 4.1 and 55 percent in Cases 1 and 2, respec-

tively. The reductions are larger in Case 2 due to the
lower thrust of the rotor.

3. The amplitudes of the local section airloads (nor-

mal and inplane) are substantially reduced in Case 2,

proving it to be the driver behind the large reductions in
the vibratory root forces and moments in this design.

This airload reduction comes about along with a reduction

in rotor thrust. In the practical application of a Case 1

deign, no reduction occurs in the airloads due to the thrust

constraint and the vibratory forces and moments are

reduced through blade tuning and frequency placement.

4. In Case 1 the optimum blade retains the same nor-

malized power requirement as that of the reference blade
and has a more efficient power loading than the reference

blade for Case 2.

5. A proper choice of the move limit is important in

arriving at a better local minimum.
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Tablei ContraintValues

Reference

blade

f3 (per rev) (flap) 3.07

f4 (per rev) (flap) 6.76

f5 (per rev) (flap) 9.28

f6 (per rev) (lead-lag) 12.63

AI (lb-ft 2) 19.75

W (lb) 3.41

3/rev fr (lb) 2.81

3/rev mx (lb-ft) 0.59

3/rev me (lb-ft) 0.23

4/rev mz (lb-ft) 0.70

Thrust r T (lb) 298.70

PrescribedBounds Optimum

lower upper (Case I)a (Case 2)b

3.05 3.50 3.13 3.3l

6.50 6.90 6.87 6.90

9.25 9.50 9.38 9.25

12.50 12.75 12.75 12.71

19.75 20.30 19.75

. 3.41 3.39 3.01

- 2.81 2.75 1.08

0.59 0.59 0.26

0.23 0.23 0.05

0.70 0.64 0.18

298.70 e 298.70 158.50

aCase 1 • optimum design with thrust constraint, T > Trd
bCase 2 : optimum design without thrust constraint

CFor Case 1 only

Table 20pdmiadon results

El=, (lb--ft 2 )

El,.,,(lb-.-ft2 )

iGJr (lb'-ft 2 )

k, fft)

c, _)

4/rev _'z (lb)

Percent reduc-

tion c

3/revA (Ib)

Percent reduc-

Reference
blade

10277.00

354.00

261.00

Opumum

(Case 1)a

10277.00

354.00

261.00

iOptimum

(Case 2) b

10300.00

378.00

261.00

0.27

1.00

0.45

0.16

0.16 0.17

1.00 1.24

0.45 0.28

0.14 0.016

10.90 89.80

3.17 3.04 1.43

4.10 55.00

tiorl c

aCase I: Optimum design with thrust constraint,

T> Trel"
bCase 2: Optimum design without thrust constraint
CFrom reference blade
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